- Introduced ContentRouterAgent to determine the next step in information gathering (file search, web search, or analysis) based on task relevance and focus mode. - Added FileSearchAgent to handle searching through attached files, processing file content into searchable documents. - Updated SynthesizerAgent to utilize a prompt template for generating comprehensive responses based on context and user queries. - Enhanced TaskManagerAgent to consider file context when creating tasks. - Improved AnalyzerAgent to assess the sufficiency of context, including file and web documents. - Implemented utility functions for processing files and ranking documents based on similarity to queries. - Updated prompts to include new instructions for handling file context and routing decisions. - Adjusted agent search workflow to integrate new agents and support file handling.
226 lines
7.1 KiB
TypeScript
226 lines
7.1 KiB
TypeScript
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
|
import { AIMessage } from '@langchain/core/messages';
|
|
import { Command, END } from '@langchain/langgraph';
|
|
import { EventEmitter } from 'events';
|
|
import { Document } from 'langchain/document';
|
|
import { AgentState } from './agentState';
|
|
import { Embeddings } from '@langchain/core/embeddings';
|
|
import { processFilesToDocuments, getRankedDocs } from '../utils/fileProcessing';
|
|
|
|
export class FileSearchAgent {
|
|
private llm: BaseChatModel;
|
|
private emitter: EventEmitter;
|
|
private systemInstructions: string;
|
|
private signal: AbortSignal;
|
|
private embeddings: Embeddings;
|
|
|
|
constructor(
|
|
llm: BaseChatModel,
|
|
emitter: EventEmitter,
|
|
systemInstructions: string,
|
|
signal: AbortSignal,
|
|
embeddings: Embeddings,
|
|
) {
|
|
this.llm = llm;
|
|
this.emitter = emitter;
|
|
this.systemInstructions = systemInstructions;
|
|
this.signal = signal;
|
|
this.embeddings = embeddings;
|
|
}
|
|
|
|
/**
|
|
* File search agent node
|
|
*/
|
|
async execute(state: typeof AgentState.State): Promise<Command> {
|
|
try {
|
|
// Determine current task to process
|
|
const currentTask =
|
|
state.tasks && state.tasks.length > 0
|
|
? state.tasks[state.currentTaskIndex || 0]
|
|
: state.query;
|
|
|
|
console.log(
|
|
`Processing file search for task ${(state.currentTaskIndex || 0) + 1} of ${state.tasks?.length || 1}: "${currentTask}"`,
|
|
);
|
|
|
|
// Check if we have file IDs to process
|
|
if (!state.fileIds || state.fileIds.length === 0) {
|
|
console.log('No files attached for search');
|
|
return new Command({
|
|
goto: 'analyzer',
|
|
update: {
|
|
messages: [new AIMessage('No files attached to search.')],
|
|
},
|
|
});
|
|
}
|
|
|
|
// Emit consulting attached files event
|
|
this.emitter.emit('agent_action', {
|
|
type: 'agent_action',
|
|
data: {
|
|
action: 'CONSULTING_ATTACHED_FILES',
|
|
message: `Consulting attached files...`,
|
|
details: {
|
|
query: state.query,
|
|
currentTask: currentTask,
|
|
taskIndex: (state.currentTaskIndex || 0) + 1,
|
|
totalTasks: state.tasks?.length || 1,
|
|
fileCount: state.fileIds.length,
|
|
documentCount: state.relevantDocuments.length,
|
|
},
|
|
},
|
|
});
|
|
|
|
// Process files to documents
|
|
const fileDocuments = await processFilesToDocuments(state.fileIds);
|
|
|
|
if (fileDocuments.length === 0) {
|
|
console.log('No processable file content found');
|
|
return new Command({
|
|
goto: 'analyzer',
|
|
update: {
|
|
messages: [new AIMessage('No searchable content found in attached files.')],
|
|
},
|
|
});
|
|
}
|
|
|
|
console.log(`Processed ${fileDocuments.length} file documents for search`);
|
|
|
|
// Emit searching file content event
|
|
this.emitter.emit('agent_action', {
|
|
type: 'agent_action',
|
|
data: {
|
|
action: 'SEARCHING_FILE_CONTENT',
|
|
message: `Searching through ${fileDocuments.length} file sections for relevant information`,
|
|
details: {
|
|
query: state.query,
|
|
currentTask: currentTask,
|
|
taskIndex: (state.currentTaskIndex || 0) + 1,
|
|
totalTasks: state.tasks?.length || 1,
|
|
fileDocumentCount: fileDocuments.length,
|
|
documentCount: state.relevantDocuments.length,
|
|
},
|
|
},
|
|
});
|
|
|
|
// Generate query embedding for similarity search
|
|
const queryEmbedding = await this.embeddings.embedQuery(
|
|
state.originalQuery + ' ' + currentTask,
|
|
);
|
|
|
|
// Perform similarity search over file documents
|
|
const rankedDocuments = getRankedDocs(
|
|
queryEmbedding,
|
|
fileDocuments,
|
|
12, // maxDocs
|
|
0.3, // similarity threshold
|
|
);
|
|
|
|
console.log(`Found ${rankedDocuments.length} relevant file sections`);
|
|
|
|
if (rankedDocuments.length === 0) {
|
|
// Emit no relevant content event
|
|
this.emitter.emit('agent_action', {
|
|
type: 'agent_action',
|
|
data: {
|
|
action: 'NO_RELEVANT_FILE_CONTENT',
|
|
message: `No relevant content found in attached files for the current task`,
|
|
details: {
|
|
query: state.query,
|
|
currentTask: currentTask,
|
|
taskIndex: (state.currentTaskIndex || 0) + 1,
|
|
totalTasks: state.tasks?.length || 1,
|
|
searchedDocuments: fileDocuments.length,
|
|
documentCount: state.relevantDocuments.length,
|
|
},
|
|
},
|
|
});
|
|
|
|
return new Command({
|
|
goto: 'analyzer',
|
|
update: {
|
|
messages: [new AIMessage('No relevant content found in attached files for the current task.')],
|
|
},
|
|
});
|
|
}
|
|
|
|
// Emit file content found event
|
|
this.emitter.emit('agent_action', {
|
|
type: 'agent_action',
|
|
data: {
|
|
action: 'FILE_CONTENT_FOUND',
|
|
message: `Found ${rankedDocuments.length} relevant sections in attached files`,
|
|
details: {
|
|
query: state.query,
|
|
currentTask: currentTask,
|
|
taskIndex: (state.currentTaskIndex || 0) + 1,
|
|
totalTasks: state.tasks?.length || 1,
|
|
relevantSections: rankedDocuments.length,
|
|
searchedDocuments: fileDocuments.length,
|
|
documentCount: state.relevantDocuments.length + rankedDocuments.length,
|
|
},
|
|
},
|
|
});
|
|
|
|
const responseMessage = `File search completed. Found ${rankedDocuments.length} relevant sections in attached files.`;
|
|
console.log(responseMessage);
|
|
|
|
return new Command({
|
|
goto: 'analyzer', // Route back to analyzer to process the results
|
|
update: {
|
|
messages: [new AIMessage(responseMessage)],
|
|
relevantDocuments: rankedDocuments,
|
|
},
|
|
});
|
|
} catch (error) {
|
|
console.error('File search error:', error);
|
|
const errorMessage = new AIMessage(
|
|
`File search failed: ${error instanceof Error ? error.message : 'Unknown error'}`,
|
|
);
|
|
|
|
return new Command({
|
|
goto: END,
|
|
update: {
|
|
messages: [errorMessage],
|
|
},
|
|
});
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform a similarity search over file documents
|
|
* @param state The current agent state
|
|
* @returns Ranked documents relevant to the current task
|
|
*/
|
|
async search(state: typeof AgentState.State): Promise<Document[]> {
|
|
if (!state.fileIds || state.fileIds.length === 0) {
|
|
return [];
|
|
}
|
|
|
|
// Process files to documents
|
|
const fileDocuments = await processFilesToDocuments(state.fileIds);
|
|
|
|
if (fileDocuments.length === 0) {
|
|
return [];
|
|
}
|
|
|
|
// Determine current task to search for
|
|
const currentTask =
|
|
state.tasks && state.tasks.length > 0
|
|
? state.tasks[state.currentTaskIndex || 0]
|
|
: state.query;
|
|
|
|
// Generate query embedding for similarity search
|
|
const queryEmbedding = await this.embeddings.embedQuery(
|
|
state.originalQuery + ' ' + currentTask,
|
|
);
|
|
|
|
// Perform similarity search and return ranked documents
|
|
return getRankedDocs(
|
|
queryEmbedding,
|
|
fileDocuments,
|
|
8, // maxDocs
|
|
0.3, // similarity threshold
|
|
);
|
|
}
|
|
}
|