Perplexica/src/lib/providers/index.ts
2025-04-07 13:49:09 -04:00

129 lines
4 KiB
TypeScript

import { Embeddings } from '@langchain/core/embeddings';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
import {
getAzureOpenaiApiKey,
getAzureOpenaiEndpoint,
getAzureOpenaiModelName,
getAzureOpenaiApiVersion,
} from '../config';
import { ChatOpenAI, AzureChatOpenAI } from '@langchain/openai';
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadDeepseekChatModels } from './deepseek';
import Chat from '@/components/Chat';
export interface ChatModel {
displayName: string;
model: BaseChatModel;
}
export interface EmbeddingModel {
displayName: string;
model: Embeddings;
}
export const chatModelProviders: Record<
string,
() => Promise<Record<string, ChatModel>>
> = {
openai: loadOpenAIChatModels,
ollama: loadOllamaChatModels,
groq: loadGroqChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
deepseek: loadDeepseekChatModels,
};
export const embeddingModelProviders: Record<
string,
() => Promise<Record<string, EmbeddingModel>>
> = {
openai: loadOpenAIEmbeddingModels,
ollama: loadOllamaEmbeddingModels,
gemini: loadGeminiEmbeddingModels,
transformers: loadTransformersEmbeddingsModels,
};
export const getAvailableChatModelProviders = async () => {
const models: Record<string, Record<string, ChatModel>> = {};
for (const provider in chatModelProviders) {
const providerModels = await chatModelProviders[provider]();
if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels;
}
}
const customOpenAiApiKey = getCustomOpenaiApiKey();
const customOpenAiApiUrl = getCustomOpenaiApiUrl();
const customOpenAiModelName = getCustomOpenaiModelName();
const azureOpenAiApiKey = getAzureOpenaiApiKey();
const azureOpenAiModelName = getAzureOpenaiModelName();
const azureOpenAiApiVersion = getAzureOpenaiApiVersion();
const azureOpenAiEndpoint = getAzureOpenaiEndpoint();
models['custom_openai'] = {
...(customOpenAiApiKey && customOpenAiApiUrl && customOpenAiModelName
? {
[customOpenAiModelName]: {
displayName: customOpenAiModelName,
model: new ChatOpenAI({
openAIApiKey: customOpenAiApiKey,
modelName: customOpenAiModelName,
temperature: 0.7,
configuration: {
baseURL: customOpenAiApiUrl,
},
}) as unknown as BaseChatModel,
},
}
: {}),
};
console.log("here ok1 - start azure_openai");
console.log(azureOpenAiApiKey, azureOpenAiEndpoint, azureOpenAiApiVersion, azureOpenAiModelName);
models['azure_openai'] = {
...(azureOpenAiApiKey && azureOpenAiEndpoint && azureOpenAiApiVersion && azureOpenAiModelName
? {
[azureOpenAiModelName]: {
displayName: azureOpenAiModelName,
model: new AzureChatOpenAI({
openAIApiKey: azureOpenAiApiKey,
deploymentName: azureOpenAiModelName,
openAIBasePath: azureOpenAiEndpoint,
openAIApiVersion: azureOpenAiApiVersion,
temperature: 0.7
}) as unknown as BaseChatModel
},
}
: {}),
}
console.log(models);
return models;
};
export const getAvailableEmbeddingModelProviders = async () => {
const models: Record<string, Record<string, EmbeddingModel>> = {};
for (const provider in embeddingModelProviders) {
const providerModels = await embeddingModelProviders[provider]();
if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels;
}
}
return models;
};