import type { Embeddings } from '@langchain/core/embeddings'; import type { BaseChatModel } from '@langchain/core/language_models/chat_models'; import { BaseMessage } from '@langchain/core/messages'; import { StringOutputParser } from '@langchain/core/output_parsers'; import { ChatPromptTemplate, MessagesPlaceholder, PromptTemplate, } from '@langchain/core/prompts'; import { RunnableLambda, RunnableMap, RunnableSequence, } from '@langchain/core/runnables'; import { StreamEvent } from '@langchain/core/tracers/log_stream'; import { ChatOpenAI } from '@langchain/openai'; import eventEmitter from 'events'; import { Document } from 'langchain/document'; import fs from 'node:fs'; import path from 'node:path'; import LineOutputParser from '../outputParsers/lineOutputParser'; import LineListOutputParser from '../outputParsers/listLineOutputParser'; import { searchSearxng } from '../searxng'; import computeSimilarity from '../utils/computeSimilarity'; import { getDocumentsFromLinks } from '../utils/documents'; import formatChatHistoryAsString from '../utils/formatHistory'; export interface MetaSearchAgentType { searchAndAnswer: ( message: string, history: BaseMessage[], llm: BaseChatModel, embeddings: Embeddings, optimizationMode: 'speed' | 'balanced' | 'quality', fileIds: string[], systemInstructions: string, signal: AbortSignal, ) => Promise; } interface Config { searchWeb: boolean; rerank: boolean; summarizer: boolean; rerankThreshold: number; queryGeneratorPrompt: string; responsePrompt: string; activeEngines: string[]; additionalSearchCriteria?: string; } type BasicChainInput = { chat_history: BaseMessage[]; query: string; }; class MetaSearchAgent implements MetaSearchAgentType { private config: Config; private strParser = new StringOutputParser(); private searchQuery?: string; private searxngUrl?: string; constructor(config: Config) { this.config = config; } private async createSearchRetrieverChain(llm: BaseChatModel) { (llm as unknown as ChatOpenAI).temperature = 0; return RunnableSequence.from([ PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt), llm, this.strParser, RunnableLambda.from(async (input: string) => { //console.log(`LLM response for initial web search:"${input}"`); const linksOutputParser = new LineListOutputParser({ key: 'links', }); const questionOutputParser = new LineOutputParser({ key: 'answer', }); const links = await linksOutputParser.parse(input); let question = await questionOutputParser.parse(input); //console.log('question', question); if (question === 'not_needed') { return { query: '', docs: [] }; } if (links.length > 0) { if (question.length === 0) { question = 'summarize'; } let docs: Document[] = []; const linkDocs = await getDocumentsFromLinks({ links }); const docGroups: Document[] = []; linkDocs.map((doc) => { const URLDocExists = docGroups.find( (d) => d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10, ); if (!URLDocExists) { docGroups.push({ ...doc, metadata: { ...doc.metadata, totalDocs: 1, }, }); } const docIndex = docGroups.findIndex( (d) => d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10, ); if (docIndex !== -1) { docGroups[docIndex].pageContent = docGroups[docIndex].pageContent + `\n\n` + doc.pageContent; docGroups[docIndex].metadata.totalDocs += 1; } }); await Promise.all( docGroups.map(async (doc) => { const res = await llm.invoke(` You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query. If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary. - **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague. - **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query. - **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format. The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag. 1. \` Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers. It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications by using containers. What is Docker and how does it work? Response: Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed. \` 2. \` The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical realm, including astronomy. summarize Response: The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in 1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe. \` Everything below is the actual data you will be working with. Good luck! ${question} ${doc.pageContent} Make sure to answer the query in the summary. `); const document = new Document({ pageContent: res.content as string, metadata: { title: doc.metadata.title, url: doc.metadata.url, }, }); docs.push(document); }), ); return { query: question, docs: docs }; } else { if (this.config.additionalSearchCriteria) { question = `${question} ${this.config.additionalSearchCriteria}`; } const searxngResult = await searchSearxng(question, { language: 'en', engines: this.config.activeEngines, }); // Store the SearXNG URL for later use in emitting to the client this.searxngUrl = searxngResult.searchUrl; const documents = searxngResult.results.map( (result) => new Document({ pageContent: result.content || (this.config.activeEngines.includes('youtube') ? result.title : '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */, metadata: { title: result.title, url: result.url, ...(result.img_src && { img_src: result.img_src }), }, }), ); return { query: question, docs: documents, searchQuery: question }; } }), ]); } private async createAnsweringChain( llm: BaseChatModel, fileIds: string[], embeddings: Embeddings, optimizationMode: 'speed' | 'balanced' | 'quality', systemInstructions: string, signal: AbortSignal, ) { return RunnableSequence.from([ RunnableMap.from({ systemInstructions: () => systemInstructions, query: (input: BasicChainInput) => input.query, chat_history: (input: BasicChainInput) => input.chat_history, date: () => new Date().toISOString(), context: RunnableLambda.from( async ( input: BasicChainInput, options?: { signal?: AbortSignal }, ) => { // Check if the request was aborted if (options?.signal?.aborted || signal?.aborted) { console.log('Request cancelled by user'); throw new Error('Request cancelled by user'); } const processedHistory = formatChatHistoryAsString( input.chat_history, ); let docs: Document[] | null = null; let query = input.query; if (this.config.searchWeb) { const searchRetrieverChain = await this.createSearchRetrieverChain(llm); var date = new Date().toISOString(); const searchRetrieverResult = await searchRetrieverChain.invoke( { chat_history: processedHistory, query, date, }, { signal: options?.signal }, ); query = searchRetrieverResult.query; docs = searchRetrieverResult.docs; // Store the search query in the context for emitting to the client if (searchRetrieverResult.searchQuery) { this.searchQuery = searchRetrieverResult.searchQuery; } } const sortedDocs = await this.rerankDocs( query, docs ?? [], fileIds, embeddings, optimizationMode, ); return sortedDocs; }, ) .withConfig({ runName: 'FinalSourceRetriever', }) .pipe(this.processDocs), }), ChatPromptTemplate.fromMessages([ ['system', this.config.responsePrompt], new MessagesPlaceholder('chat_history'), ['user', '{query}'], ]), llm, this.strParser, ]).withConfig({ runName: 'FinalResponseGenerator', }); } private async rerankDocs( query: string, docs: Document[], fileIds: string[], embeddings: Embeddings, optimizationMode: 'speed' | 'balanced' | 'quality', ) { if (docs.length === 0 && fileIds.length === 0) { return docs; } const filesData = fileIds .map((file) => { const filePath = path.join(process.cwd(), 'uploads', file); const contentPath = filePath + '-extracted.json'; const embeddingsPath = filePath + '-embeddings.json'; const content = JSON.parse(fs.readFileSync(contentPath, 'utf8')); const embeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8')); const fileSimilaritySearchObject = content.contents.map( (c: string, i: number) => { return { fileName: content.title, content: c, embeddings: embeddings.embeddings[i], }; }, ); return fileSimilaritySearchObject; }) .flat(); if (query.toLocaleLowerCase() === 'summarize') { return docs.slice(0, 15); } const docsWithContent = docs.filter( (doc) => doc.pageContent && doc.pageContent.length > 0, ); if (optimizationMode === 'speed' || this.config.rerank === false) { if (filesData.length > 0) { const [queryEmbedding] = await Promise.all([ embeddings.embedQuery(query), ]); const fileDocs = filesData.map((fileData) => { return new Document({ pageContent: fileData.content, metadata: { title: fileData.fileName, url: `File`, }, }); }); const similarity = filesData.map((fileData, i) => { const sim = computeSimilarity(queryEmbedding, fileData.embeddings); return { index: i, similarity: sim, }; }); let sortedDocs = similarity .filter( (sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3), ) .sort((a, b) => b.similarity - a.similarity) .slice(0, 15) .map((sim) => fileDocs[sim.index]); sortedDocs = docsWithContent.length > 0 ? sortedDocs.slice(0, 8) : sortedDocs; return [ ...sortedDocs, ...docsWithContent.slice(0, 15 - sortedDocs.length), ]; } else { return docsWithContent.slice(0, 15); } } else if (optimizationMode === 'balanced') { const [docEmbeddings, queryEmbedding] = await Promise.all([ embeddings.embedDocuments( docsWithContent.map((doc) => doc.pageContent), ), embeddings.embedQuery(query), ]); docsWithContent.push( ...filesData.map((fileData) => { return new Document({ pageContent: fileData.content, metadata: { title: fileData.fileName, url: `File`, }, }); }), ); docEmbeddings.push(...filesData.map((fileData) => fileData.embeddings)); const similarity = docEmbeddings.map((docEmbedding, i) => { const sim = computeSimilarity(queryEmbedding, docEmbedding); return { index: i, similarity: sim, }; }); const sortedDocs = similarity .filter((sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3)) .sort((a, b) => b.similarity - a.similarity) .slice(0, 15) .map((sim) => docsWithContent[sim.index]); return sortedDocs; } return []; } private processDocs(docs: Document[]) { return docs .map( (_, index) => `${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`, ) .join('\n'); } private async handleStream( stream: AsyncGenerator, emitter: eventEmitter, llm: BaseChatModel, signal: AbortSignal, ) { if (signal.aborted) { return; } for await (const event of stream) { if (signal.aborted) { return; } if ( event.event === 'on_chain_end' && event.name === 'FinalSourceRetriever' ) { const sourcesData = event.data.output; if (this.searchQuery) { emitter.emit( 'data', JSON.stringify({ type: 'sources', data: sourcesData, searchQuery: this.searchQuery, searchUrl: this.searxngUrl, }), ); } else { emitter.emit( 'data', JSON.stringify({ type: 'sources', data: sourcesData }), ); } } if ( event.event === 'on_chain_stream' && event.name === 'FinalResponseGenerator' ) { emitter.emit( 'data', JSON.stringify({ type: 'response', data: event.data.chunk }), ); } if ( event.event === 'on_chain_end' && event.name === 'FinalResponseGenerator' ) { // Get model name safely with better detection let modelName = 'Unknown'; try { // @ts-ignore - Different LLM implementations have different properties if (llm.modelName) { // @ts-ignore modelName = llm.modelName; // @ts-ignore } else if (llm._llm && llm._llm.modelName) { // @ts-ignore modelName = llm._llm.modelName; // @ts-ignore } else if (llm.model && llm.model.modelName) { // @ts-ignore modelName = llm.model.modelName; } else if ('model' in llm) { // @ts-ignore const model = llm.model; if (typeof model === 'string') { modelName = model; // @ts-ignore } else if (model && model.modelName) { // @ts-ignore modelName = model.modelName; } } else if (llm.constructor && llm.constructor.name) { // Last resort: use the class name modelName = llm.constructor.name; } } catch (e) { console.error('Failed to get model name:', e); } // Send model info before ending emitter.emit( 'stats', JSON.stringify({ type: 'modelStats', data: { modelName, }, }), ); emitter.emit('end'); } } } async searchAndAnswer( message: string, history: BaseMessage[], llm: BaseChatModel, embeddings: Embeddings, optimizationMode: 'speed' | 'balanced' | 'quality', fileIds: string[], systemInstructions: string, signal: AbortSignal, ) { const emitter = new eventEmitter(); const answeringChain = await this.createAnsweringChain( llm, fileIds, embeddings, optimizationMode, systemInstructions, signal, ); const stream = answeringChain.streamEvents( { chat_history: history, query: message, }, { version: 'v1', // Pass the abort signal to the LLM streaming chain signal, }, ); this.handleStream(stream, emitter, llm, signal); return emitter; } } export default MetaSearchAgent;