feat(agent): Refactor agent architecture to enhance content routing and file search capabilities

- Introduced ContentRouterAgent to determine the next step in information gathering (file search, web search, or analysis) based on task relevance and focus mode.
- Added FileSearchAgent to handle searching through attached files, processing file content into searchable documents.
- Updated SynthesizerAgent to utilize a prompt template for generating comprehensive responses based on context and user queries.
- Enhanced TaskManagerAgent to consider file context when creating tasks.
- Improved AnalyzerAgent to assess the sufficiency of context, including file and web documents.
- Implemented utility functions for processing files and ranking documents based on similarity to queries.
- Updated prompts to include new instructions for handling file context and routing decisions.
- Adjusted agent search workflow to integrate new agents and support file handling.
This commit is contained in:
Willie Zutz 2025-06-28 14:48:08 -06:00
parent 7b47d3dacb
commit de3d26fb15
20 changed files with 1044 additions and 96 deletions

View file

@ -2,11 +2,20 @@ import { NextResponse } from 'next/server';
import fs from 'fs';
import path from 'path';
import crypto from 'crypto';
import { getAvailableEmbeddingModelProviders } from '@/lib/providers';
import { getAvailableEmbeddingModelProviders, getAvailableChatModelProviders } from '@/lib/providers';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx';
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
import { Document } from 'langchain/document';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { ChatOpenAI } from '@langchain/openai';
import { ChatOllama } from '@langchain/ollama';
import { z } from 'zod';
interface FileRes {
fileName: string;
@ -25,6 +34,52 @@ const splitter = new RecursiveCharacterTextSplitter({
chunkOverlap: 100,
});
// Define Zod schema for structured topic generation output
const TopicsSchema = z.object({
topics: z
.array(z.string())
.min(1)
.max(3)
.describe('Array of 1-3 concise, descriptive topics that capture the main subject matter'),
});
type TopicsOutput = z.infer<typeof TopicsSchema>;
/**
* Generate semantic topics for a document using LLM with structured output
*/
async function generateFileTopics(
content: string,
filename: string,
llm: BaseChatModel
): Promise<string> {
try {
// Take first 1500 characters for topic generation to avoid token limits
const excerpt = content.substring(0, 1500);
const prompt = `Analyze the following document excerpt and generate 1-5 concise, descriptive topics that capture the main subject matter. The topics should be useful for determining if this document is relevant to answer questions.
Document filename: ${filename}
Document excerpt:
${excerpt}
Generate topics that describe what this document is about, its domain, and key subject areas. Focus on topics that would help determine relevance for search queries.`;
// Use structured output for reliable topic extraction
const structuredLlm = llm.withStructuredOutput(TopicsSchema, {
name: 'generate_topics',
});
const result = await structuredLlm.invoke(prompt);
console.log('Generated topics:', result.topics);
// Filename is included for context
return filename + ', ' + result.topics.join(', ');
} catch (error) {
console.warn('Error generating topics with LLM:', error);
return `Document: ${filename}`;
}
}
export async function POST(req: Request) {
try {
const formData = await req.formData();
@ -32,6 +87,9 @@ export async function POST(req: Request) {
const files = formData.getAll('files') as File[];
const embedding_model = formData.get('embedding_model');
const embedding_model_provider = formData.get('embedding_model_provider');
const chat_model = formData.get('chat_model');
const chat_model_provider = formData.get('chat_model_provider');
const ollama_context_window = formData.get('ollama_context_window');
if (!embedding_model || !embedding_model_provider) {
return NextResponse.json(
@ -40,21 +98,65 @@ export async function POST(req: Request) {
);
}
const embeddingModels = await getAvailableEmbeddingModelProviders();
const provider =
embedding_model_provider ?? Object.keys(embeddingModels)[0];
const embeddingModel =
embedding_model ?? Object.keys(embeddingModels[provider as string])[0];
// Get available providers
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
let embeddingsModel =
embeddingModels[provider as string]?.[embeddingModel as string]?.model;
if (!embeddingsModel) {
// Setup embedding model
const embeddingProvider =
embeddingModelProviders[
embedding_model_provider as string ?? Object.keys(embeddingModelProviders)[0]
];
const embeddingModelConfig =
embeddingProvider[
embedding_model as string ?? Object.keys(embeddingProvider)[0]
];
if (!embeddingModelConfig) {
return NextResponse.json(
{ message: 'Invalid embedding model selected' },
{ status: 400 },
);
}
let embeddingsModel = embeddingModelConfig.model;
// Setup chat model for topic generation (similar to chat route)
const chatModelProvider =
chatModelProviders[
chat_model_provider as string ?? Object.keys(chatModelProviders)[0]
];
const chatModelConfig =
chatModelProvider[
chat_model as string ?? Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel;
// Handle chat model creation like in chat route
if (chat_model_provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.1,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModelConfig) {
llm = chatModelConfig.model;
// Set context window size for Ollama models
if (llm instanceof ChatOllama && chat_model_provider === 'ollama') {
// Use provided context window or default to 2048
const contextWindow = ollama_context_window ?
parseInt(ollama_context_window as string, 10) : 2048;
llm.numCtx = contextWindow;
}
}
const processedFiles: FileRes[] = [];
await Promise.all(
@ -89,11 +191,16 @@ export async function POST(req: Request) {
const splitted = await splitter.splitDocuments(docs);
// Generate semantic topics using LLM
const fullContent = docs.map(doc => doc.pageContent).join('\n');
const semanticTopics = await generateFileTopics(fullContent, file.name, llm);
const extractedDataPath = filePath.replace(/\.\w+$/, '-extracted.json');
fs.writeFileSync(
extractedDataPath,
JSON.stringify({
title: file.name,
topics: semanticTopics,
contents: splitted.map((doc) => doc.pageContent),
}),
);