feat(agent): Refactor search agents and implement SpeedSearchAgent
- Updated FileSearchAgent to improve code readability and formatting. - Refactored SynthesizerAgent for better prompt handling and document processing. - Enhanced TaskManagerAgent with clearer file context handling. - Modified AgentSearch to maintain consistent parameter formatting. - Introduced SpeedSearchAgent for optimized search functionality. - Updated metaSearchAgent to support new SpeedSearchAgent. - Improved file processing utilities for better document handling. - Added test attachments for sporting events queries.
This commit is contained in:
parent
de3d26fb15
commit
d66300e78e
19 changed files with 832 additions and 996 deletions
560
src/lib/search/speedSearch.ts
Normal file
560
src/lib/search/speedSearch.ts
Normal file
|
|
@ -0,0 +1,560 @@
|
|||
import type { Embeddings } from '@langchain/core/embeddings';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import {
|
||||
ChatPromptTemplate,
|
||||
MessagesPlaceholder,
|
||||
PromptTemplate,
|
||||
} from '@langchain/core/prompts';
|
||||
import {
|
||||
RunnableLambda,
|
||||
RunnableMap,
|
||||
RunnableSequence,
|
||||
} from '@langchain/core/runnables';
|
||||
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import eventEmitter from 'events';
|
||||
import { Document } from 'langchain/document';
|
||||
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||
import LineListOutputParser from '../outputParsers/listLineOutputParser';
|
||||
import { searchSearxng } from '../searxng';
|
||||
import { formatDateForLLM } from '../utils';
|
||||
import { getDocumentsFromLinks } from '../utils/documents';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import { getModelName } from '../utils/modelUtils';
|
||||
|
||||
export interface SpeedSearchAgentType {
|
||||
searchAndAnswer: (
|
||||
message: string,
|
||||
history: BaseMessage[],
|
||||
llm: BaseChatModel,
|
||||
embeddings: Embeddings,
|
||||
systemInstructions: string,
|
||||
signal: AbortSignal,
|
||||
personaInstructions?: string,
|
||||
focusMode?: string,
|
||||
) => Promise<eventEmitter>;
|
||||
}
|
||||
|
||||
interface Config {
|
||||
searchWeb: boolean;
|
||||
rerank: boolean;
|
||||
summarizer: boolean;
|
||||
rerankThreshold: number;
|
||||
queryGeneratorPrompt: string;
|
||||
responsePrompt: string;
|
||||
activeEngines: string[];
|
||||
additionalSearchCriteria?: string;
|
||||
}
|
||||
|
||||
type BasicChainInput = {
|
||||
chat_history: BaseMessage[];
|
||||
query: string;
|
||||
};
|
||||
|
||||
class SpeedSearchAgent implements SpeedSearchAgentType {
|
||||
private config: Config;
|
||||
private strParser = new StringOutputParser();
|
||||
private searchQuery?: string;
|
||||
private searxngUrl?: string;
|
||||
|
||||
constructor(config: Config) {
|
||||
this.config = config;
|
||||
}
|
||||
|
||||
/**
|
||||
* Emit a progress event with the given percentage and message
|
||||
*/
|
||||
private emitProgress(
|
||||
emitter: eventEmitter,
|
||||
percentage: number,
|
||||
message: string,
|
||||
subMessage?: string,
|
||||
) {
|
||||
const progressData: any = {
|
||||
message,
|
||||
current: percentage,
|
||||
total: 100,
|
||||
};
|
||||
|
||||
// Add subMessage if provided
|
||||
if (subMessage) {
|
||||
progressData.subMessage = subMessage;
|
||||
}
|
||||
|
||||
emitter.emit(
|
||||
'progress',
|
||||
JSON.stringify({
|
||||
type: 'progress',
|
||||
data: progressData,
|
||||
}),
|
||||
);
|
||||
}
|
||||
|
||||
private async createSearchRetrieverChain(
|
||||
llm: BaseChatModel,
|
||||
systemInstructions: string,
|
||||
emitter: eventEmitter,
|
||||
signal: AbortSignal,
|
||||
) {
|
||||
// TODO: Don't we want to set this back to default once search is done?
|
||||
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||
|
||||
this.emitProgress(emitter, 10, `Building search query`);
|
||||
|
||||
return RunnableSequence.from([
|
||||
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
|
||||
llm,
|
||||
this.strParser,
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
try {
|
||||
//console.log(`LLM response for initial web search:"${input}"`);
|
||||
const linksOutputParser = new LineListOutputParser({
|
||||
key: 'links',
|
||||
});
|
||||
|
||||
const questionOutputParser = new LineOutputParser({
|
||||
key: 'answer',
|
||||
});
|
||||
|
||||
const links = await linksOutputParser.parse(input);
|
||||
let question = await questionOutputParser.parse(input);
|
||||
|
||||
//console.log('question', question);
|
||||
|
||||
if (question === 'not_needed') {
|
||||
return { query: '', docs: [] };
|
||||
}
|
||||
|
||||
if (links.length > 0) {
|
||||
if (question.length === 0) {
|
||||
question = 'summarize';
|
||||
}
|
||||
|
||||
let docs: Document[] = [];
|
||||
|
||||
const linkDocs = await getDocumentsFromLinks({ links });
|
||||
|
||||
const docGroups: Document[] = [];
|
||||
|
||||
linkDocs.map((doc) => {
|
||||
const URLDocExists = docGroups.find(
|
||||
(d) =>
|
||||
d.metadata.url === doc.metadata.url &&
|
||||
d.metadata.totalDocs < 10,
|
||||
);
|
||||
|
||||
if (!URLDocExists) {
|
||||
docGroups.push({
|
||||
...doc,
|
||||
metadata: {
|
||||
...doc.metadata,
|
||||
totalDocs: 1,
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
const docIndex = docGroups.findIndex(
|
||||
(d) =>
|
||||
d.metadata.url === doc.metadata.url &&
|
||||
d.metadata.totalDocs < 10,
|
||||
);
|
||||
|
||||
if (docIndex !== -1) {
|
||||
docGroups[docIndex].pageContent =
|
||||
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
|
||||
docGroups[docIndex].metadata.totalDocs += 1;
|
||||
}
|
||||
});
|
||||
|
||||
this.emitProgress(emitter, 20, `Summarizing content`);
|
||||
|
||||
await Promise.all(
|
||||
docGroups.map(async (doc) => {
|
||||
const systemPrompt = systemInstructions
|
||||
? `${systemInstructions}\n\n`
|
||||
: '';
|
||||
|
||||
const res = await llm.invoke(
|
||||
`${systemPrompt}You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
|
||||
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
|
||||
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
|
||||
|
||||
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
|
||||
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
|
||||
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
|
||||
|
||||
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
|
||||
|
||||
<example>
|
||||
1. \`<text>
|
||||
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
|
||||
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
|
||||
by using containers.
|
||||
</text>
|
||||
|
||||
<query>
|
||||
What is Docker and how does it work?
|
||||
</query>
|
||||
|
||||
Response:
|
||||
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
|
||||
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
|
||||
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
|
||||
\`
|
||||
2. \`<text>
|
||||
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
|
||||
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
|
||||
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
|
||||
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
|
||||
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
|
||||
realm, including astronomy.
|
||||
</text>
|
||||
|
||||
<query>
|
||||
summarize
|
||||
</query>
|
||||
|
||||
Response:
|
||||
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
|
||||
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
|
||||
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
|
||||
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
|
||||
\`
|
||||
</example>
|
||||
|
||||
Everything below is the actual data you will be working with. Good luck!
|
||||
|
||||
<query>
|
||||
${question}
|
||||
</query>
|
||||
|
||||
<text>
|
||||
${doc.pageContent}
|
||||
</text>
|
||||
|
||||
Make sure to answer the query in the summary.
|
||||
`,
|
||||
{ signal },
|
||||
);
|
||||
|
||||
const document = new Document({
|
||||
pageContent: res.content as string,
|
||||
metadata: {
|
||||
title: doc.metadata.title,
|
||||
url: doc.metadata.url,
|
||||
},
|
||||
});
|
||||
|
||||
docs.push(document);
|
||||
}),
|
||||
);
|
||||
|
||||
return { query: question, docs: docs };
|
||||
} else {
|
||||
if (this.config.additionalSearchCriteria) {
|
||||
question = `${question} ${this.config.additionalSearchCriteria}`;
|
||||
}
|
||||
this.emitProgress(
|
||||
emitter,
|
||||
20,
|
||||
`Searching the web`,
|
||||
`Search Query: ${question}`,
|
||||
);
|
||||
|
||||
const searxngResult = await searchSearxng(question, {
|
||||
language: 'en',
|
||||
engines: this.config.activeEngines,
|
||||
});
|
||||
|
||||
// Store the SearXNG URL for later use in emitting to the client
|
||||
this.searxngUrl = searxngResult.searchUrl;
|
||||
|
||||
const documents = searxngResult.results.map(
|
||||
(result) =>
|
||||
new Document({
|
||||
pageContent:
|
||||
result.content ||
|
||||
(this.config.activeEngines.includes('youtube')
|
||||
? result.title
|
||||
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
|
||||
metadata: {
|
||||
title: result.title,
|
||||
url: result.url,
|
||||
...(result.img_src && { img_src: result.img_src }),
|
||||
},
|
||||
}),
|
||||
);
|
||||
|
||||
return { query: question, docs: documents, searchQuery: question };
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('Error in search retriever chain:', error);
|
||||
emitter.emit('error', JSON.stringify({ data: error }));
|
||||
throw error;
|
||||
}
|
||||
}),
|
||||
]);
|
||||
}
|
||||
|
||||
private async createAnsweringChain(
|
||||
llm: BaseChatModel,
|
||||
embeddings: Embeddings,
|
||||
systemInstructions: string,
|
||||
signal: AbortSignal,
|
||||
emitter: eventEmitter,
|
||||
personaInstructions?: string,
|
||||
) {
|
||||
return RunnableSequence.from([
|
||||
RunnableMap.from({
|
||||
systemInstructions: () => systemInstructions,
|
||||
query: (input: BasicChainInput) => input.query,
|
||||
chat_history: (input: BasicChainInput) => input.chat_history,
|
||||
date: () => formatDateForLLM(),
|
||||
personaInstructions: () => personaInstructions || '',
|
||||
context: RunnableLambda.from(
|
||||
async (
|
||||
input: BasicChainInput,
|
||||
options?: { signal?: AbortSignal },
|
||||
) => {
|
||||
// Check if the request was aborted
|
||||
if (options?.signal?.aborted || signal?.aborted) {
|
||||
console.log('Request cancelled by user');
|
||||
throw new Error('Request cancelled by user');
|
||||
}
|
||||
|
||||
const processedHistory = formatChatHistoryAsString(
|
||||
input.chat_history,
|
||||
);
|
||||
|
||||
let docs: Document[] | null = null;
|
||||
let query = input.query;
|
||||
|
||||
if (this.config.searchWeb) {
|
||||
const searchRetrieverChain =
|
||||
await this.createSearchRetrieverChain(
|
||||
llm,
|
||||
systemInstructions,
|
||||
emitter,
|
||||
signal,
|
||||
);
|
||||
var date = formatDateForLLM();
|
||||
|
||||
const searchRetrieverResult = await searchRetrieverChain.invoke(
|
||||
{
|
||||
chat_history: processedHistory,
|
||||
query,
|
||||
date,
|
||||
systemInstructions,
|
||||
},
|
||||
{ signal: options?.signal },
|
||||
);
|
||||
|
||||
query = searchRetrieverResult.query;
|
||||
docs = searchRetrieverResult.docs;
|
||||
|
||||
// Store the search query in the context for emitting to the client
|
||||
if (searchRetrieverResult.searchQuery) {
|
||||
this.searchQuery = searchRetrieverResult.searchQuery;
|
||||
}
|
||||
}
|
||||
|
||||
const sortedDocs = await this.rerankDocsForSpeed(
|
||||
query,
|
||||
docs ?? [],
|
||||
embeddings,
|
||||
emitter,
|
||||
signal,
|
||||
);
|
||||
|
||||
if (options?.signal?.aborted || signal?.aborted) {
|
||||
console.log('Request cancelled by user');
|
||||
throw new Error('Request cancelled by user');
|
||||
}
|
||||
|
||||
this.emitProgress(emitter, 100, `Done`);
|
||||
return sortedDocs;
|
||||
},
|
||||
)
|
||||
.withConfig({
|
||||
runName: 'FinalSourceRetriever',
|
||||
})
|
||||
.pipe(this.processDocs),
|
||||
}),
|
||||
ChatPromptTemplate.fromMessages([
|
||||
['system', this.config.responsePrompt],
|
||||
new MessagesPlaceholder('chat_history'),
|
||||
['user', '{query}'],
|
||||
]),
|
||||
llm,
|
||||
this.strParser,
|
||||
]).withConfig({
|
||||
runName: 'FinalResponseGenerator',
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Speed-optimized document reranking with simplified logic for web results only
|
||||
*/
|
||||
private async rerankDocsForSpeed(
|
||||
query: string,
|
||||
docs: Document[],
|
||||
embeddings: Embeddings,
|
||||
emitter: eventEmitter,
|
||||
signal: AbortSignal,
|
||||
): Promise<Document[]> {
|
||||
try {
|
||||
if (docs.length === 0) {
|
||||
return docs;
|
||||
}
|
||||
|
||||
if (query.toLocaleLowerCase() === 'summarize') {
|
||||
return docs.slice(0, 15);
|
||||
}
|
||||
|
||||
// Filter out documents with no content
|
||||
let docsWithContent = docs.filter(
|
||||
(doc) => doc.pageContent && doc.pageContent.length > 0,
|
||||
);
|
||||
|
||||
// Speed mode logic - simply return first 15 documents with content
|
||||
// No similarity ranking to prioritize speed
|
||||
this.emitProgress(
|
||||
emitter,
|
||||
50,
|
||||
`Ranking sources`,
|
||||
this.searchQuery ? `Search Query: ${this.searchQuery}` : undefined,
|
||||
);
|
||||
|
||||
return docsWithContent.slice(0, 15);
|
||||
} catch (error) {
|
||||
console.error('Error in rerankDocsForSpeed:', error);
|
||||
emitter.emit('error', JSON.stringify({ data: error }));
|
||||
}
|
||||
return [];
|
||||
}
|
||||
|
||||
private processDocs(docs: Document[]) {
|
||||
const fullDocs = docs
|
||||
.map(
|
||||
(_, index) =>
|
||||
`<${index + 1}>\n
|
||||
<title>${docs[index].metadata.title}</title>\n
|
||||
${docs[index].metadata?.url.toLowerCase().includes('file') ? '' : '\n<url>' + docs[index].metadata.url + '</url>\n'}
|
||||
<content>\n${docs[index].pageContent}\n</content>\n
|
||||
</${index + 1}>\n`,
|
||||
)
|
||||
.join('\n');
|
||||
console.log('Processed docs:', fullDocs);
|
||||
return fullDocs;
|
||||
}
|
||||
|
||||
private async handleStream(
|
||||
stream: AsyncGenerator<StreamEvent, any, any>,
|
||||
emitter: eventEmitter,
|
||||
llm: BaseChatModel,
|
||||
signal: AbortSignal,
|
||||
) {
|
||||
if (signal.aborted) {
|
||||
return;
|
||||
}
|
||||
|
||||
for await (const event of stream) {
|
||||
if (signal.aborted) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (
|
||||
event.event === 'on_chain_end' &&
|
||||
event.name === 'FinalSourceRetriever'
|
||||
) {
|
||||
const sourcesData = event.data.output;
|
||||
if (this.searchQuery) {
|
||||
emitter.emit(
|
||||
'data',
|
||||
JSON.stringify({
|
||||
type: 'sources',
|
||||
data: sourcesData,
|
||||
searchQuery: this.searchQuery,
|
||||
searchUrl: this.searxngUrl,
|
||||
}),
|
||||
);
|
||||
} else {
|
||||
emitter.emit(
|
||||
'data',
|
||||
JSON.stringify({ type: 'sources', data: sourcesData }),
|
||||
);
|
||||
}
|
||||
}
|
||||
if (
|
||||
event.event === 'on_chain_stream' &&
|
||||
event.name === 'FinalResponseGenerator'
|
||||
) {
|
||||
emitter.emit(
|
||||
'data',
|
||||
JSON.stringify({ type: 'response', data: event.data.chunk }),
|
||||
);
|
||||
}
|
||||
if (
|
||||
event.event === 'on_chain_end' &&
|
||||
event.name === 'FinalResponseGenerator'
|
||||
) {
|
||||
const modelName = getModelName(llm);
|
||||
|
||||
// Send model info before ending
|
||||
emitter.emit(
|
||||
'stats',
|
||||
JSON.stringify({
|
||||
type: 'modelStats',
|
||||
data: {
|
||||
modelName,
|
||||
},
|
||||
}),
|
||||
);
|
||||
|
||||
emitter.emit('end');
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async searchAndAnswer(
|
||||
message: string,
|
||||
history: BaseMessage[],
|
||||
llm: BaseChatModel,
|
||||
embeddings: Embeddings,
|
||||
systemInstructions: string,
|
||||
signal: AbortSignal,
|
||||
personaInstructions?: string,
|
||||
focusMode?: string,
|
||||
) {
|
||||
const emitter = new eventEmitter();
|
||||
|
||||
const answeringChain = await this.createAnsweringChain(
|
||||
llm,
|
||||
embeddings,
|
||||
systemInstructions,
|
||||
signal,
|
||||
emitter,
|
||||
personaInstructions,
|
||||
);
|
||||
|
||||
const stream = answeringChain.streamEvents(
|
||||
{
|
||||
chat_history: history,
|
||||
query: message,
|
||||
},
|
||||
{
|
||||
version: 'v1',
|
||||
// Pass the abort signal to the LLM streaming chain
|
||||
signal,
|
||||
},
|
||||
);
|
||||
|
||||
this.handleStream(stream, emitter, llm, signal);
|
||||
|
||||
return emitter;
|
||||
}
|
||||
}
|
||||
|
||||
export default SpeedSearchAgent;
|
||||
Loading…
Add table
Add a link
Reference in a new issue