feat(app): Introduce quality mode. Improve functionality of balanced mode using readability to get page content and pull relevant excerpts
feat(UI): Show progress during inferrence feat(security): Don't show API keys in the UI any more feat(models): Support Claude 4 Anthropic models
This commit is contained in:
parent
288120dc1d
commit
c47a630372
17 changed files with 2142 additions and 818 deletions
|
|
@ -22,8 +22,9 @@ import LineOutputParser from '../outputParsers/lineOutputParser';
|
|||
import LineListOutputParser from '../outputParsers/listLineOutputParser';
|
||||
import { searchSearxng } from '../searxng';
|
||||
import computeSimilarity from '../utils/computeSimilarity';
|
||||
import { getDocumentsFromLinks } from '../utils/documents';
|
||||
import { getDocumentsFromLinks, getWebContent } from '../utils/documents';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import { getModelName } from '../utils/modelUtils';
|
||||
|
||||
export interface MetaSearchAgentType {
|
||||
searchAndAnswer: (
|
||||
|
|
@ -64,9 +65,35 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||
this.config = config;
|
||||
}
|
||||
|
||||
private async createSearchRetrieverChain(llm: BaseChatModel) {
|
||||
/**
|
||||
* Emit a progress event with the given percentage and message
|
||||
*/
|
||||
private emitProgress(
|
||||
emitter: eventEmitter,
|
||||
percentage: number,
|
||||
message: string,
|
||||
) {
|
||||
emitter.emit(
|
||||
'progress',
|
||||
JSON.stringify({
|
||||
type: 'progress',
|
||||
data: {
|
||||
message,
|
||||
current: percentage,
|
||||
total: 100,
|
||||
},
|
||||
}),
|
||||
);
|
||||
}
|
||||
|
||||
private async createSearchRetrieverChain(
|
||||
llm: BaseChatModel,
|
||||
emitter: eventEmitter,
|
||||
) {
|
||||
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||
|
||||
this.emitProgress(emitter, 10, `Building search query`);
|
||||
|
||||
return RunnableSequence.from([
|
||||
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
|
||||
llm,
|
||||
|
|
@ -131,6 +158,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||
}
|
||||
});
|
||||
|
||||
this.emitProgress(emitter, 20, `Summarizing content`);
|
||||
|
||||
await Promise.all(
|
||||
docGroups.map(async (doc) => {
|
||||
const res = await llm.invoke(`
|
||||
|
|
@ -208,6 +237,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||
|
||||
return { query: question, docs: docs };
|
||||
} else {
|
||||
this.emitProgress(emitter, 20, `Searching the web`);
|
||||
if (this.config.additionalSearchCriteria) {
|
||||
question = `${question} ${this.config.additionalSearchCriteria}`;
|
||||
}
|
||||
|
|
@ -249,6 +279,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||
systemInstructions: string,
|
||||
signal: AbortSignal,
|
||||
emitter: eventEmitter,
|
||||
) {
|
||||
return RunnableSequence.from([
|
||||
RunnableMap.from({
|
||||
|
|
@ -276,7 +307,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||
|
||||
if (this.config.searchWeb) {
|
||||
const searchRetrieverChain =
|
||||
await this.createSearchRetrieverChain(llm);
|
||||
await this.createSearchRetrieverChain(llm, emitter);
|
||||
var date = new Date().toISOString();
|
||||
|
||||
const searchRetrieverResult = await searchRetrieverChain.invoke(
|
||||
|
|
@ -303,8 +334,14 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||
fileIds,
|
||||
embeddings,
|
||||
optimizationMode,
|
||||
llm,
|
||||
emitter,
|
||||
signal,
|
||||
);
|
||||
|
||||
console.log('Ranked docs:', sortedDocs);
|
||||
|
||||
this.emitProgress(emitter, 100, `Done`);
|
||||
return sortedDocs;
|
||||
},
|
||||
)
|
||||
|
|
@ -331,11 +368,18 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||
fileIds: string[],
|
||||
embeddings: Embeddings,
|
||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||
) {
|
||||
llm: BaseChatModel,
|
||||
emitter: eventEmitter,
|
||||
signal: AbortSignal,
|
||||
): Promise<Document[]> {
|
||||
if (docs.length === 0 && fileIds.length === 0) {
|
||||
return docs;
|
||||
}
|
||||
|
||||
if (query.toLocaleLowerCase() === 'summarize') {
|
||||
return docs.slice(0, 15);
|
||||
}
|
||||
|
||||
const filesData = fileIds
|
||||
.map((file) => {
|
||||
const filePath = path.join(process.cwd(), 'uploads', file);
|
||||
|
|
@ -360,107 +404,216 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||
})
|
||||
.flat();
|
||||
|
||||
if (query.toLocaleLowerCase() === 'summarize') {
|
||||
return docs.slice(0, 15);
|
||||
}
|
||||
|
||||
const docsWithContent = docs.filter(
|
||||
let docsWithContent = docs.filter(
|
||||
(doc) => doc.pageContent && doc.pageContent.length > 0,
|
||||
);
|
||||
|
||||
if (optimizationMode === 'speed' || this.config.rerank === false) {
|
||||
if (filesData.length > 0) {
|
||||
const [queryEmbedding] = await Promise.all([
|
||||
embeddings.embedQuery(query),
|
||||
]);
|
||||
const queryEmbedding = await embeddings.embedQuery(query);
|
||||
|
||||
const getRankedDocs = async (
|
||||
queryEmbedding: number[],
|
||||
includeFiles: boolean,
|
||||
includeNonFileDocs: boolean,
|
||||
maxDocs: number,
|
||||
) => {
|
||||
let docsToRank = includeNonFileDocs ? docsWithContent : [];
|
||||
|
||||
if (includeFiles) {
|
||||
// Add file documents to the ranking
|
||||
const fileDocs = filesData.map((fileData) => {
|
||||
return new Document({
|
||||
pageContent: fileData.content,
|
||||
metadata: {
|
||||
title: fileData.fileName,
|
||||
url: `File`,
|
||||
embeddings: fileData.embeddings,
|
||||
},
|
||||
});
|
||||
});
|
||||
docsToRank.push(...fileDocs);
|
||||
}
|
||||
|
||||
const similarity = filesData.map((fileData, i) => {
|
||||
const sim = computeSimilarity(queryEmbedding, fileData.embeddings);
|
||||
|
||||
const similarity = await Promise.all(
|
||||
docsToRank.map(async (doc, i) => {
|
||||
const sim = computeSimilarity(
|
||||
queryEmbedding,
|
||||
doc.metadata?.embeddings
|
||||
? doc.metadata?.embeddings
|
||||
: (await embeddings.embedDocuments([doc.pageContent]))[0],
|
||||
);
|
||||
return {
|
||||
index: i,
|
||||
similarity: sim,
|
||||
};
|
||||
});
|
||||
}),
|
||||
);
|
||||
|
||||
let sortedDocs = similarity
|
||||
.filter(
|
||||
(sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3),
|
||||
)
|
||||
.sort((a, b) => b.similarity - a.similarity)
|
||||
.slice(0, 15)
|
||||
.map((sim) => fileDocs[sim.index]);
|
||||
let rankedDocs = similarity
|
||||
.filter((sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3))
|
||||
.sort((a, b) => b.similarity - a.similarity)
|
||||
.map((sim) => docsToRank[sim.index]);
|
||||
|
||||
sortedDocs =
|
||||
docsWithContent.length > 0 ? sortedDocs.slice(0, 8) : sortedDocs;
|
||||
rankedDocs =
|
||||
docsToRank.length > 0 ? rankedDocs.slice(0, maxDocs) : rankedDocs;
|
||||
return rankedDocs;
|
||||
};
|
||||
|
||||
if (optimizationMode === 'speed' || this.config.rerank === false) {
|
||||
this.emitProgress(emitter, 50, `Ranking sources`);
|
||||
if (filesData.length > 0) {
|
||||
const sortedFiles = await getRankedDocs(queryEmbedding, true, false, 8);
|
||||
|
||||
return [
|
||||
...sortedDocs,
|
||||
...docsWithContent.slice(0, 15 - sortedDocs.length),
|
||||
...sortedFiles,
|
||||
...docsWithContent.slice(0, 15 - sortedFiles.length),
|
||||
];
|
||||
} else {
|
||||
return docsWithContent.slice(0, 15);
|
||||
}
|
||||
} else if (optimizationMode === 'balanced') {
|
||||
const [docEmbeddings, queryEmbedding] = await Promise.all([
|
||||
embeddings.embedDocuments(
|
||||
docsWithContent.map((doc) => doc.pageContent),
|
||||
),
|
||||
embeddings.embedQuery(query),
|
||||
]);
|
||||
this.emitProgress(emitter, 40, `Ranking sources`);
|
||||
let sortedDocs = await getRankedDocs(queryEmbedding, true, true, 10);
|
||||
|
||||
docsWithContent.push(
|
||||
...filesData.map((fileData) => {
|
||||
return new Document({
|
||||
pageContent: fileData.content,
|
||||
metadata: {
|
||||
title: fileData.fileName,
|
||||
url: `File`,
|
||||
},
|
||||
this.emitProgress(emitter, 60, `Enriching sources`);
|
||||
sortedDocs = await Promise.all(
|
||||
sortedDocs.map(async (doc) => {
|
||||
const webContent = await getWebContent(doc.metadata.url);
|
||||
const chunks =
|
||||
webContent?.pageContent
|
||||
.match(/.{1,500}/g)
|
||||
?.map((chunk) => chunk.trim()) || [];
|
||||
const chunkEmbeddings = await embeddings.embedDocuments(chunks);
|
||||
const similarities = chunkEmbeddings.map((chunkEmbedding) => {
|
||||
return computeSimilarity(queryEmbedding, chunkEmbedding);
|
||||
});
|
||||
|
||||
const topChunks = similarities
|
||||
.map((similarity, index) => ({ similarity, index }))
|
||||
.sort((a, b) => b.similarity - a.similarity)
|
||||
.slice(0, 5)
|
||||
.map((chunk) => chunks[chunk.index]);
|
||||
const excerpt = topChunks.join('\n\n');
|
||||
|
||||
let newDoc = {
|
||||
...doc,
|
||||
pageContent: excerpt
|
||||
? `${excerpt}\n\n${doc.pageContent}`
|
||||
: doc.pageContent,
|
||||
};
|
||||
return newDoc;
|
||||
}),
|
||||
);
|
||||
|
||||
docEmbeddings.push(...filesData.map((fileData) => fileData.embeddings));
|
||||
return sortedDocs;
|
||||
} else if (optimizationMode === 'quality') {
|
||||
this.emitProgress(emitter, 30, 'Ranking sources...');
|
||||
|
||||
const similarity = docEmbeddings.map((docEmbedding, i) => {
|
||||
const sim = computeSimilarity(queryEmbedding, docEmbedding);
|
||||
// Get the top ranked web results for detailed analysis based off their preview embeddings
|
||||
const topWebResults = await getRankedDocs(
|
||||
queryEmbedding,
|
||||
false,
|
||||
true,
|
||||
30,
|
||||
);
|
||||
|
||||
return {
|
||||
index: i,
|
||||
similarity: sim,
|
||||
};
|
||||
const summaryParser = new LineOutputParser({
|
||||
key: 'summary',
|
||||
});
|
||||
|
||||
const sortedDocs = similarity
|
||||
.filter((sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3))
|
||||
.sort((a, b) => b.similarity - a.similarity)
|
||||
.slice(0, 15)
|
||||
.map((sim) => docsWithContent[sim.index]);
|
||||
// Get full content and generate detailed summaries for top results sequentially
|
||||
const enhancedDocs: Document[] = [];
|
||||
const maxEnhancedDocs = 5;
|
||||
for (let i = 0; i < topWebResults.length; i++) {
|
||||
if (signal.aborted) {
|
||||
return [];
|
||||
}
|
||||
if (enhancedDocs.length >= maxEnhancedDocs) {
|
||||
break; // Limit to 5 documents
|
||||
}
|
||||
const result = topWebResults[i];
|
||||
|
||||
return sortedDocs;
|
||||
this.emitProgress(
|
||||
emitter,
|
||||
enhancedDocs.length * 10 + 40,
|
||||
`Deep analyzing sources: ${enhancedDocs.length + 1}/${maxEnhancedDocs}`,
|
||||
);
|
||||
|
||||
try {
|
||||
const url = result.metadata.url;
|
||||
const webContent = await getWebContent(url, true);
|
||||
|
||||
if (webContent) {
|
||||
// Generate a detailed summary using the LLM
|
||||
const summary = await llm.invoke(`
|
||||
You are a web content summarizer, tasked with creating a detailed, accurate summary of content from a webpage
|
||||
Your summary should:
|
||||
- Be thorough and comprehensive, capturing all key points
|
||||
- Format the content using markdown, including headings, lists, and tables
|
||||
- Include specific details, numbers, and quotes when relevant
|
||||
- Be concise and to the point, avoiding unnecessary fluff
|
||||
- Answer the user's query, which is: ${query}
|
||||
- Output your answer in an XML format, with the summary inside the \`summary\` XML tag
|
||||
- If the content is not relevant to the query, respond with "not_needed" to start the summary tag, followed by a one line description of why the source is not needed
|
||||
- E.g. "not_needed: There is relevant information in the source, but it doesn't contain specifics about X"
|
||||
- Make sure the reason the source is not needed is very specific and detailed
|
||||
- Include useful links to external resources, if applicable
|
||||
|
||||
Here is the content to summarize:
|
||||
${webContent.metadata.html ? webContent.metadata.html : webContent.pageContent}
|
||||
`);
|
||||
|
||||
const summarizedContent = await summaryParser.parse(
|
||||
summary.content as string,
|
||||
);
|
||||
|
||||
if (
|
||||
summarizedContent.toLocaleLowerCase().startsWith('not_needed')
|
||||
) {
|
||||
console.log(
|
||||
`LLM response for URL "${url}" indicates it's not needed:`,
|
||||
summarizedContent,
|
||||
);
|
||||
continue; // Skip this document if not needed
|
||||
}
|
||||
|
||||
//console.log(`LLM response for URL "${url}":`, summarizedContent);
|
||||
enhancedDocs.push(
|
||||
new Document({
|
||||
pageContent: summarizedContent,
|
||||
metadata: {
|
||||
...webContent.metadata,
|
||||
url: url,
|
||||
},
|
||||
}),
|
||||
);
|
||||
}
|
||||
} catch (error) {
|
||||
console.error(`Error processing URL ${result.metadata.url}:`, error);
|
||||
}
|
||||
}
|
||||
|
||||
// Add relevant file documents
|
||||
const fileDocs = await getRankedDocs(queryEmbedding, true, false, 5);
|
||||
|
||||
return [...enhancedDocs, ...fileDocs];
|
||||
}
|
||||
|
||||
return [];
|
||||
}
|
||||
|
||||
private processDocs(docs: Document[]) {
|
||||
return docs
|
||||
const fullDocs = docs
|
||||
.map(
|
||||
(_, index) =>
|
||||
`${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`,
|
||||
`<${index + 1}>\n
|
||||
<title>${docs[index].metadata.title}</title>\n
|
||||
${docs[index].metadata?.url.toLowerCase().includes('file') ? '' : '\n<url>' + docs[index].metadata.url + '</url>\n'}
|
||||
<content>\n${docs[index].pageContent}\n</content>\n
|
||||
</${index + 1}>\n`,
|
||||
)
|
||||
.join('\n');
|
||||
// console.log('Processed docs:', fullDocs);
|
||||
return fullDocs;
|
||||
}
|
||||
|
||||
private async handleStream(
|
||||
|
|
@ -513,38 +666,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||
event.event === 'on_chain_end' &&
|
||||
event.name === 'FinalResponseGenerator'
|
||||
) {
|
||||
// Get model name safely with better detection
|
||||
let modelName = 'Unknown';
|
||||
try {
|
||||
// @ts-ignore - Different LLM implementations have different properties
|
||||
if (llm.modelName) {
|
||||
// @ts-ignore
|
||||
modelName = llm.modelName;
|
||||
// @ts-ignore
|
||||
} else if (llm._llm && llm._llm.modelName) {
|
||||
// @ts-ignore
|
||||
modelName = llm._llm.modelName;
|
||||
// @ts-ignore
|
||||
} else if (llm.model && llm.model.modelName) {
|
||||
// @ts-ignore
|
||||
modelName = llm.model.modelName;
|
||||
} else if ('model' in llm) {
|
||||
// @ts-ignore
|
||||
const model = llm.model;
|
||||
if (typeof model === 'string') {
|
||||
modelName = model;
|
||||
// @ts-ignore
|
||||
} else if (model && model.modelName) {
|
||||
// @ts-ignore
|
||||
modelName = model.modelName;
|
||||
}
|
||||
} else if (llm.constructor && llm.constructor.name) {
|
||||
// Last resort: use the class name
|
||||
modelName = llm.constructor.name;
|
||||
}
|
||||
} catch (e) {
|
||||
console.error('Failed to get model name:', e);
|
||||
}
|
||||
const modelName = getModelName(llm);
|
||||
|
||||
// Send model info before ending
|
||||
emitter.emit(
|
||||
|
|
@ -581,6 +703,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||
optimizationMode,
|
||||
systemInstructions,
|
||||
signal,
|
||||
emitter,
|
||||
);
|
||||
|
||||
const stream = answeringChain.streamEvents(
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue